Wybuch w rurociągu – deflagracja, detonacja i detonacja niestabilna a dobór przerywacza płomienia [FILM]

Szkolenia ATEX
Szkolenia ATEX
Nazywam się Mariusz Balicki i jestem tu, by Ci pomóc.

Jeśli borykasz się z problemem w zakresie bezpieczeństwa
wybuchowego, pożarowego lub procesowego, to zachęcam Cię do kontaktu.

Kliknij w gwiazdki, aby wyświetlić dane +48 50* *** *** | m.bal***@***** | +48 12 **** ***

W obu doświadczeniach płomień napędzany był poprzez wzrost objętości spalonych gazów oraz przez coraz szybsze zasysanie palnej mieszanki gazów. W efekcie, wraz z długością rurociągu, czoło płomienia przyspieszało generując coraz większą ilość energii.

[emaillocker id=”7976″]

Deflagracja, a detonacja rurowa

Podczas pierwszego testu spalanie gazów w rurociągu przebiegło z prędkością niższą niż prędkość dźwięku generując przy tym stosunkowo niewielką ilość energii – proces ten nazywamy deflagracją rurową. Drugi test został przeprowadzony w analogiczny sposób, a jedyna różnica polegała na zwiększeniu długości rurociągu testowego o zaledwie jeden metr. Ta pozornie niewielka zmiana sprawiła, że prędkość spalania gazów w rurociągu przekroczyła prędkość dźwięku przechodząc w tzw. detonację rurową, która generuje znacznie większą ilość energii oraz typową falę uderzeniową.

Kiedy zachodzi deflagracja, a kiedy detonacja?

W przypadku odpowiednio długich rurociągów deflagracja przechodzi w detonację, która stanowi znacznie bardziej dynamiczny proces. To, czy w danym rurociągu będziemy mieli do czynienia z deflagracją, czy też deflagracja przejdzie w detonację, zależy głównie od dwóch parametrów:

  • grupy wybuchowości danego gazu,
  • stosunku średnicy rurociągu do jego długości, przy czym parametr ten jest różny dla poszczególnych grup wybuchowości gazów.

Przykładowo dla gazu z grupy IIC, z jakim mieliśmy do czynienia w czasie testów, deflagracja może przekształcić się w detonację, gdy długość rurociągu L przekroczy 30-krotność jego średnicy D (norma EN ISO 16852:2010). W testach zastosowano rurociąg o średnicy D = 0,094 m oraz o długości L równej 2, a następnie 3 metry. Wspomniany stosunek długości L do średnicy D wyniósł zatem ~21 w czasie pierwszego testu oraz ~32 w czasie drugiego testu. Oglądając film łatwo zauważyć różnicę w dynamice obu zjawisk oraz ilości energii jaką one wytworzyły.

Tabela 1. Zjawisko deflagracji i detonacji w zależności od stosunku długości rurociągu L do jego średnicy D na bazie normy EN ISO 16852:2010.

Wypowiedź eksperta

Parametr L/D nieźle sprawdza się w przypadku prostych instalacji, jak np. dwa zbiorniki połączone rurociągiem. Na proces spalania gazowej mieszaniny wybuchowej w rurociągu ma jednak wpływ wiele czynników. Są to m.in. geometria przekroju poprzecznego rurociągu, jego zakrzywienia, zastosowana armatura czy typ i rodzaj przyłączy. Wszystko to oddziałuje na turbulencje przepływających gazów, co ostatecznie wpływa na dynamikę wybuchu.

Należy również pamiętać, że przejście deflagracji w detonację nie ma charakteru punktowego. Pomiędzy wspomnianymi procesami mamy do czynienia z krótkotrwałą, ale bardzo niebezpieczną detonacją niestabilną. Zjawisko to charakteryzuje się gwałtownym skokiem prędkości oraz ciśnienia wybuchu, dlatego stosowane w tym obszarze przerywacze płomienia powinny zostać pod tym kątem przetestowane, co potwierdza odpowiedni certyfikat.   

Rafał Olszański, GRUPA WOLFF

Wykres 1. Typowa zmiana prędkości przemieszczania się czoła wybuchu oraz zmiany ciśnienia na długości rurociągu.

Detonacja niestabilna w kanale, którym przemieszcza się wybuch

Wyjaśnienie parametrów: V – prędkość; L – długość rurociągu liczona od miejsca zapłonu.

Przerywacz płomienia deflagracji, detonacji czy detonacji niestabilnej?

Oba testy miały za zadanie uświadomić użytkownikom instalacji procesowych jak ważnym zadaniem jest określenie lokalizacji oraz typu rurowego przerywacza płomienia. Przykładowo zastosowanie przerywacza płomienia certyfikowanego tylko na zjawisko deflagracji nie zabezpieczy nas przed zjawiskiem detonacji, czy też detonacji niestabilnej. Z drugiej strony nie warto stosować przerywaczy detonacji lub detonacji niestabilnej w miejscach, w których wystąpienie tych zjawisk, z przyczyn obiektywnych, jest niemożliwe.

Dobór przerywacza płomienia pod kątem charakterystyki potencjalnego wybuchu należy rozpocząć od określenia odcinków rurociągu, w których będziemy mieli do czynienia odpowiednio z deflagracją, detonacją oraz detonacją niestabilną. Następnie należy zweryfikować, który z odcinków, z technicznego oraz ekonomicznego punktu widzenia, będzie optymalny dla montażu zabezpieczenia. Przykładowo montaż tańszego przerywacza płomienia w miejscu trudno dostępnym szybko wygeneruje dodatkowe koszty podczas przeglądów i serwisów. Takie rozwiązanie może mieć również wpływ na częstotliwość i jakość wspomnianych prac, co przełoży się na poziom bezpieczeństwa instalacji.

W przypadku złożonych instalacji dobrą praktyką jest przeprowadzenie audytu, który wskaże optymalne rozwiązania z uwzględnieniem pozostałych, równie ważnych parametrów pracy przerywaczy płomienia, takich jak: ciśnienie, temperatura medium, grupa wybuchowości mieszaniny palnej, średnica i geometria rurociągu.

Błędny dobór zabezpieczeń procesowych, nieuwzględniający wspomnianych wyżej parametrów, jest częstym zjawiskiem spotykanym w przemyśle na całym świecie, zaś naszym celem jest wyeliminowanie tego typu ryzyka już na etapie poprawnego doboru typu i rodzaju zabezpieczenia.

Ważniejsze definicje

Grupa wybuchowości: uszeregowanie palnych mieszanin gazowo-powietrznych w odniesieniu do maksymalnego doświadczalnego bezpiecznego prześwitu mierzonego zgodnie z IEC 60079-1-1:2002.

Deflagracja: wybuch rozprzestrzeniający się z prędkością poddźwiękową.

Detonacja: wybuch rozprzestrzeniający się z prędkością naddźwiękową i charakteryzujący się falą uderzeniową.

Detonacja stabilna: detonacja rozprzestrzeniająca się w ograniczonym systemie bez znaczących zmian prędkości i charakterystyki ciśnienia.

Detonacja niestabilna: detonacja podczas przejścia procesu spalania od deflagracji do detonacji stabilnej. Przejście to występuje w ograniczonej przestrzennie strefie, gdzie prędkość fali spalania nie jest stała i gdzie ciśnienie detonacji jest znacząco wyższe niż w przypadku detonacji stabilnej. Położenie strefy przejściowej zależy między innymi od średnicy przewodu rurowego, jego konfiguracji, gazu testowego i jego grupy wybuchowości.

Przerywacz płomienia: urządzenie, które jest zamontowane w otworze obudowy lub w przewodzie rurowym łączącym system obudów i którego zamierzoną funkcją jest umożliwienie przepływu i jednocześnie zapobieganie przenoszeniu się płomienia.

Przegroda ogniowa: część przerywacza, której główną funkcją jest zapobieganie przenoszeniu płomienia.

Końcowy przerywacz płomienia: przerywacz płomienia, który jest wyposażony tylko w jeden króciec przyłączeniowy.

Rurowy przerywacz płomienia: przerywacz płomienia, który jest wyposażony w dwa króćce przyłączeniowe, każdy po jednej stronie przegrody ogniowej.

Dwukierunkowy przerywacz płomienia: przerywacz płomienia, który zapobiega przenoszeni płomienia z obu stron.

Przerywacz płomienia deflagracji: przerywacz płomienia zaprojektowany do zapobiegania przenoszeniu deflagracji. Urządzenie może być końcowym lub rurowym przerywaczem płomienia.

Przerywacz płomienia detonacji: przerywacz płomienia zaprojektowany do zapobiegania przenoszeniu detonacji. Urządzenie może być rurowym przerywaczem płomienia i może być przerywaczem detonacji stabilnej, jak również niestabilnej.

[/emaillocker]

Sprawdź darmowy pakiet edukacyjny

Weź udział w darmowym warsztacie online lub/i dołącz do naszego programu edukacyjnego całkowicie za darmo. Ty zdobywasz wiedzę, my ustanawiamy dobre standardy bezpieczeństwa.

Przewiń do końca
sprawdź darmowe warsztaty online, pobierz przewodnik ATEX, dołącz do programu edukacyjnego.

Darmowe warsztaty online

Ochrona urządzeń i aparatów przed skutkami wybuchu pyłów

Zaczniemy od podstaw prawnych, które będą stanowiły dla nas bazę dla dalszej, bardzo praktycznej części. Warsztat wesprzemy aż 28 unikalnymi filmami, których nie znajdziesz w sieci. Dzięki nim nie tylko zrozumiesz zasadę działania poszczególnych typów zabezpieczeń, ale także zobaczysz skutki ich błędnego zastosowania. Nie ukrywajmy, ta część nie tylko edukuje, ale także daje mocno do myślenia.

Poprawny dobór zabezpieczeń przeciwwybuchowych dla jednostek odpylających

Jeśli w Twoim zakładzie pracują filtry bądź cyklony, to ten warsztat jest dla Ciebie. Dowiesz się z niego jakie błędy najczęściej są popełniane przy zabezpieczaniu instalacji odpylających. Zobaczysz także studium przypadku w formie filmu, który pokazuje konsekwencje tych błędów – zdradzę tylko, że film pobudza wyobraźnię. Co ważne całość zaczniemy, krótkim wstępem nt. podstaw prawnych.

Wyładowania elektrostatyczne jako przyczyna wybuchu – jak się chronić

W czasie warsztatu zaprezentujemy szereg niezwykle ciekawych materiałów wideo, a także sporo wiedzy opartej o przepisy, normy i nasze doświadczenie. Poznasz również, a może przede wszystkim, sposoby ochrony przed elektrycznością statyczną. W warsztacie powinien wziąć udział każdy, kto pracuje w zakładzie gdzie wykonuje się operacje z palnymi cieczami, a także gazami oraz pyłami.

Oświetlenie podstawowe i awaryjne w strefach zagrożenia wybuchem

Jak dobrać oświetlenie podstawowe i awaryjne, tak by było zgodne z obowiązującymi przepisami? Na jakie rozwiązania konstrukcyjne zwrócić uwagę, aby inwestycja szybko nie okazała się workiem bez dna? Czy producenci opraw zawsze są uczciwi? To tylko kilka z kilkunastu tematów jakie zostaną poruszone w tym niezwykle merytorycznym warsztacie.

Awaryjne oświetlenie ewakuacyjne i zapasowe a aktualne wymogi prawne i normatywne

Przekrojowy warsztat dla osób mających do czynienia z oświetleniem ewakuacyjnym i zapasowym pracujących także w strefach zagrożenia wybuchem. Prowadzący skupia się na praktycznym podejściu do norm i aktów prawnych z zakresu odnoszących się do oświetlenia oraz jego zasilania jako jednej ze składowych bezpieczeństwa pożarowego w obiektach.

Poprawny dobór zabezpieczeń przeciwwybuchowych dla jednostek odpylających on demand

Jeśli w Twoim zakładzie pracują filtry bądź cyklony, to ten warsztat jest dla Ciebie. Dowiesz się z niego jakie błędy najczęściej są popełniane przy zabezpieczaniu instalacji odpylających. Zobaczysz także studium przypadku w formie filmu, który pokazuje konsekwencje tych błędów – zdradzę tylko, że film pobudza wyobraźnię. Co ważne całość zaczniemy, krótkim wstępem nt. podstaw prawnych.

To nie wszystko, przewiń niżej.

Pobierz przewodnik ATEX
Jak dostosować aparat lub instalację procesową do wymogów dyrektywy ATEX.

Co otrzymasz

  • studia przypadków pokazujące przyczyny wybuchów i pożarów
  • dostęp do filmów wideo pokazujących skutki oraz przebieg zdarzeń
  • praktyczne wskazówki jakie podjąć działania
  • statystyki odnośnie źródeł zapłonu oraz palnych pyłów
  • wiedzę nt. parametrów wybuchowości, oceny ryzyka wybuchu i DZPW, prewencji i ograniczania skutków i wiele więcej

Darmowy program
edukacyjny ATEX

Program wspiera już 3474 specjalistów odpowiedzialnych m.in. za BHP, utrzymanie ruchu, a także projektantów, rzeczoznawców ds. ppoż. i ubezpieczycieli. Dołącz do ich grona.

Co zyskujesz

  • darmową wiedzę dzięki, której się rozwijasz
  • studia przypadku pokazujące przyczyny i skutki wybuchów
  • filmy przedstawiające realne zdarzenia + komentarz
  • artykuły i poradniki
  • możliwość darmowego udziału w warsztatach
  • duże zniżki na szkolenia i konferencje

WAŻNA INFORMACJA
W związku z koronawirusem wprowadzamy szkolenia online z gwarancją zwrotu kosztów w przypadku nie spełnienia Twoich oczekiwań. Jednocześnie odwołujemy tradycyjne szkolenia do końca kwietnia.

Pobierz przewodnik ATEX

Jak dostosować urządzenie, instalację lub zakład produkcyjny do dyrektywy ATEX
  • Praktyczna wiedza poparta przykładami
  • Studia przypadków rzeczywistych wybuchów w przemyśle
  • Unikalne materiały wideo
  • Wskazówki i rady ekespertów
DARMOWE WARSZTATY ONLINE
Zapisz się zanim braknie miejsc
W czasie warsztatu Zbigniew Wolff przedstawi:
  • wymogi prawne i normatywne
  • najczęstsze błędy i ich konsekwencje
  • unikalne filmy pokazujące wybuchy w urządzeniach
W czasie warsztatu Mariusz Blicki przedstawi:
  • 28 unikalnych filmów pokazujących błędy
  • ograniczenia zabezpieczeń przeciwwybuchowych
  • najważniejsze aspekty teoretyczne i prawne
W czasie warsztatu Maciej Freza przedstawi:
  • sposoby zasilania i sterowania oświetleniem
  • sposoby testowania opraw i zasilania
  • rodzaje zasilania w oparciu o normę PN-EN 50172